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Abstract

We explore the use of principal component analysis (PCA) to characterize high-fidelity simulations and
interferometric observations of the millimeter emission that originates near the horizons of accreting black holes.
We show mathematically that the Fourier transforms of eigenimages derived from PCA applied to an ensemble of
images in the spatial domain are identical to the eigenvectors of PCA applied to the ensemble of the Fourier
transforms of the images, which suggests that this approach may be applied to modeling the sparse interferometric
Fourier-visibilities produced by an array such as the Event Horizon Telescope. We also show that the simulations
in the spatial domain can themselves be compactly represented with a PCA-derived basis of eigenimages, which
allows for detailed comparisons to be made between variable observations and time-dependent models, as well as
for detection of outliers or rare events within a time series of images. Furthermore, we demonstrate that the
spectrum of PCA eigenvalues is a diagnostic of the power spectrum of the structure and, hence, of the underlying
physical processes in the simulated and observed images.
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1. Introduction

The task of imaging and modeling the millimeter emission
close to the horizon of an accreting black hole with the Event
Horizon Telescope (EHT) encompasses a number of chal-
lenges. Interferometric imaging requires accurate synthesis of
an image based on a sparse and incomplete set of Fourier-
visibilities (see, e.g., Honma et al. 2014; Bouman et al. 2016;
Chael et al. 2016; Akiyama et al. 2017). Understanding the
morphological diversity of the structure of the emission and its
dependence on the physical parameters of the black hole rests
on the comparison of such observations to high-fidelity
simulations of the accretion flow (see, e.g., Dexter et al.
2009; Mościbrodzka et al. 2009, 2017; Chan et al. 2015b; Kim
et al. 2016; Gold et al. 2017). The accretion flow itself is
dynamic, potentially causing strong variations in the emission
morphology over the very timescales required to synthesize an
image with a large baseline interferometer (see, e.g., Lu
et al. 2016; Medeiros et al. 2017, 2018). In considering all of
these issues, a common thread that emerges is a need to
efficiently capture and characterize a complex series of images
in diverse contexts. In this and forthcoming papers, we apply
Principal Component Analysis (PCA) to General Relativistic
magnetohydrodynamic (GRMHD) simulations and simulated
EHT observations to explore its utility as an approach to
addressing these challenges.

PCA is a mathematical approach to quantifying variability of
an ensemble. In our case, the ensemble is a collection of images
obtained from time-dependent simulation outputs of black hole
accretion flows. PCA is non-parametric and does not
incorporate any physical knowledge of the black hole or its
accretion physics. Instead, PCA decomposes each image into a
sum of orthogonal-basis eigenvectors (i.e., eigenimages), with
eigenvalues that correspond to the brightness variance that each
eigenimage captures. The eigenimages are then ranked by their
eigenvalues, which allows minor variations to be discarded if

desired. In other words, PCA allows for a compact and
effective representation of the images in the ensemble. In
practice, the implicit compression can be substantial, using
perhaps only a dozen eigenvectors to represent over 1000
source images (Boroson & Lauer 2010).
In this initial exploration, we show that PCA is particularly

useful to help recognize and characterize the large-scale
temporal variability in the morphology of the millimeter
emission close to the horizon of black holes such as SgrA*

and M87. Numerous observations and studies in the past few
decades have established the fact that black hole accretion
flows are highly variable. X-ray observations of galactic black
hole binaries reveal a variability spectrum that is characterized
by red noise and also distinct high-frequency quasi-periodic
components (see, e.g., van der Klis 2000; Remillard &
McClintock 2006). Similarly, multi-wavelength observations
of nearby AGN, including the Galactic Center black hole
SgrA*, show variability on timescales ranging from hours to
months (see, e.g., Genzel et al. 2003; Do et al. 2009; Neilsen
et al. 2015). This variability is not surprising. It is understood to
be the result of the turbulent accretion flows and a potential
manifestation of the unique black hole spacetime near its
horizon (see, e.g., Rauch & Blandford 1994; Chan
et al. 2015a). Consequently, it is expected that the images for
SgrA* and M87 at mm wavelengths will also be variable at
dynamical timescales in the vicinities of the black hole
horizons(Medeiros et al. 2017, 2018).
Black hole variability is an important consideration for the

EHT. Because interferometry relies on the rotation of the Earth to
obtain images, it is critical to understand how the sources may
vary over timescales comparable to those observations to design
and implement proper image reconstruction algorithms(see, e.g.,
Lu et al. 2016; Bouman et al. 2017; Johnson et al. 2017 for early
attempts). It is also important to study and characterize the
variability predicted by different accretion flow models in order
to investigate whether the mode and amplitude of predicted
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variability agrees with observations (see Kim et al. 2016). Both
these issues are especially true for the primary target for the EHT,
SgrA*, for which the characteristic time of variability can be as
short as a few minutes.

In this paper, we show that PCA can generate a compact
orthogonal set of basis eigenimages that can accurately
represent the ensemble of images generated in a suite of
high-fidelity GRMHD simulations and facilitate the efficient
comparison of models to observations. This basis may also be
used to provide a compact rendition of the ensemble in Fourier
space and, in turn, a path to efficient representation of the
sparse visibility observations. Furthermore, we show that PCA
allows us to recognize “outliers” in the typical source
morphology and identify, both in simulations and in observa-
tions, instances of episodic physical phenomena, such as
magnetic reconnection and flaring events.

In parallel to the efforts to characterize and understand its
origins, the EHT has a nearly orthogonal interest in the
question of black hole variability; i.e., identifying emission
signatures that are, in fact, not variable. In particular, the black
hole shadow, which offers excellent opportunities for testing
the predictions of general relativity (Psaltis et al. 2015), is
expected to be both invariant in time and nearly independent of
any property of the system other than the mass of the black
hole. It is, therefore, valuable to separate time-variable aspects
of black hole images, such as turbulence and periodic
variabilities in the accretion flow, from the constant signals
arising from the black hole spacetime.

The structure of this paper is as follows. We provide a
brief development of the PCA formalism in Section 2 and
demonstrate that a PCA basis that is derived in the image
domain also provides a basis in the Fourier (i.e., visibility)
domain. We apply our formalism to a simple ensemble of
images in Section 3. In Section 4, we demonstrate the ability of
PCA to represent a temporal sequence of high-fidelity
simulated images of an accreting black hole. In Section 5, we
demonstrate the use of PCA to compactify the space of images
using dimensionality reduction and to identify times of rare or
unusual activity in the simulated time series. In Section 6, we
compare the spectrum of PCA eigenvalues to that of Gaussian
and red-noise processes and show how the PCA eigenvalues
are related to the underlying power spectrum of structures in
the images. We conclude and discuss future applications of our
work in Section 7.

2. Principal Component Analysis

Our goal is to use PCA to determine the dominant
components in a set of images of black holes. In this section,
we give a brief introduction to PCA and show that it may be
applied directly to interferometric observables. The majority of
this derivation follows Turk & Pentland (1991), with some
differences that we will explicitly outline below.

2.1. Introduction to PCA

The principle of PCA is to calculate a set of orthogonal
eigenimages (or eigenvectors) from an ensemble of images. We
can then utilize this basis to compactly represent all of the
images in the original ensemble as a linear combination of
those eigenimages.

We denote an ensemble of m images by ( )I x y,n , where
n=1, K, m and the pair of coordinates (x, y) are used to

represent the location of each of the N×N pixels on the
image. For simplicity, each image can also be represented as a
column vector In of length N2. For our purposes, the ensemble
of images will be comprised of a series of snapshots of a black
hole accretion flow that are obtained from simulations or
observations, although the derivations that we provide below
are much more general.
As the basis of our decomposition, we choose to use the m

orthogonal eigenimages uk of the covariance matrix

å=

º
=

( )

I IC
m

AA

1

. 1
n

m

n n
T

T
1

In this equation, we defined the ´N m2 matrix A, such that its
columns are the m images of the ensemble; i.e.,

º [ ] ( )I I IA . 2m1 2

Strictly speaking and contrary to the notation of Turk &
Pentland (1991), C is not a covariance matrix because we have
not subtracted the mean from each image. However, we will
refer to C as the covariance matrix throughout this paper to
avoid introducing unnecessary terminology.
The covariance matrix C is an N2×N2 matrix that measures

how the variation in the brightness of each pixel across the
ensemble of images is correlated to the variation in brightness
of every other pixel. We can write explicitly each element of
the matrix C as

å=
=

( )C
m

A A
1

, 3ij
n

m

in jn
1

where the indices i and j correspond to the N2 pixels
( = ¼i j N, 1, 2, , 2) and the index n=1, 2, K, m corresponds
to the different images in the ensemble.
In principle, we can then find the eigenimages uk of the

covariance matrix C by diagonalizing it such that

m
m

=

= ( )
u u

u u

C

AA . 4
k k k

T
k k k

However, diagonalizing an N2×N2 matrix is computationally
expensive and, in fact, not necessary. Because there are (at
most) only m independent images in the ensemble, there are
only m non-trivial eigenvalues and eigenvectors for this
covariance matrix, which we can compute in an efficient way.4

We start by computing the eigenvectors and eigenvalues of
the m×m matrix =L A AT such that

l

l

=

=
g g g

g g g ( )
v v

v v

L

A A , 5T

where gv are the m eigenvectors of L, each of dimension m. It is
easy to show by multiplying both sides of Equation (5) by A
that the matrix L and the covariance matrix C share the same
eigenvalues; i.e.,

l
l

=
=

g g g

g g g ( )
v v
v v

AA A A

CA A . 6

T

4 See, e.g., Appendix A of Strang (1988) for a discussion of this property.
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This equation also demonstrates that the vectors

=g g ( )u vA , 7

of size N2, are the eigenimages of the covariance matrix C with
corresponding eigenvalues λγ.

The normalization of the eigenimages is, in principle,
arbitrary. Following standard PCA convention, we normalize
each eigenimages such that

l= ( )u 8k k
2

and

å l =
=

( )1. 9
k

m

k
1

Because the eigenvectors are orthogonal, it also follows that
l d=¢ ¢u uk k k kk , where d ¢kk is the Kronecker delta. Hereafter, we

will use the notation =u u uk k k
T2 to denote the square of the

magnitude of an eigenimage. The overall sign of each
eigenimage is arbitrary and, in principle, the mean pixel value
of an eigenimage may be negative and this caries no physical
meaning. Here, for simplicity, we enforce the mean of each
eigenimage to be positive.

Having obtained the eigenimages of our ensemble, we can
then express any of its images as the linear combination

å=
=

( )I ua , 10n
k

m

nk k
1

where

º
( )

( )u I

u
a 11nk

k
T

n

k
2

are the amplitudes of the projections of the images on the
eigenimage basis. The column vectors ak can be written as

=
( )

( )a
u

u

A
, 12k

T
k

k
2

and are equivalent to vk, because

l
= = =

( ) ( )
( )a

v

u

v
v

A A L
. 13k

T
k

k

k

k
k2

Therefore, Equation (12) provides a simpler way of calculating
the column vectors ak compared to Equation (11). The square
of the magnitude of each image is equal to

å å

å l

=

=

=
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¢ ¢

=
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1

2

In our following discussion of outlier detection, we will also
use the notion of the fractional contribution of eigenimage k to

each snapshot n (cf. Equation (11)), which we define as

å
l

l

¢ º

=
=

( )

u I

I u
a

a

a
. 15

nk
k
T

n

n k

nk k

k

m
nk k

2 2

1
2

In principle, when we use this basis set to reconstruct each
original image in the ensemble, we need all m eigenimages.
However, depending on the level of fidelity required and on the
uniformity of the images in the set, the PCA decomposition makes
it possible for us to reduce the dimensionality of the problem by
only using the first few eigenimages to reconstruct an approx-
imation of each of the original images. This approach becomes
especially useful when only a few eigenimages are significant and
the rest are small. Naturally, the number of eigenimages used to
construct the model depends on the particular application and does
require judgment. For example, in observational data with real
noise, the eigenimage expansion can be terminated when the
model begins to overfit the noise. Boroson & Lauer (2010)
presented a detailed analysis of the optimal method to terminate a
PCA expansion given knowledge of the typical S/N of the
ensemble images. In characterizing images from simulations that
do not include observational noise, the judgment of when to
terminate the expansion is one of how much fidelity is required to
capture the critical morphology of the image.
Lastly, we emphasize an obvious but important application

of PCA. Given a set of eigenimages, the basis can also be used
to represent and analyze images that are similar to those in the
set used to define the eigenimages but that are not actually in
the set itself. In the present context, this means that a basis
constructed from a set of simulated images of an accreting
black hole should be able to represent observations of the black
hole if the simulations are sufficiently realistic.

2.2. PCA in the Fourier Domain

Even though we presented the PCA formalism using a set of
images, the data that we ultimately aim to work with are the
complex Fourier components of the image; i.e., visibility
amplitudes and phases. This is because the EHT is an
interferometric array and directly measures the latter quantities.
Ideally, we would like to devise a method for characterizing
image variability that can be used in both image space and
Fourier space and that allows us to move freely between
the two.
From a purely mathematical point of view, the image and

Fourier domains are highly symmetric and it is straightforward
to represent an operation in one domain with a complementary
operation in the other domain. In practice, however, the two
domains present strongly asymmetric viewpoints. The spatial
distribution of radio emission close to the horizon of an
accreting black hole is readily formulated and visualized with
high-fidelity simulations in the image domain. The observa-
tions are obtained in the visibility domain, however, with
relatively sparse coverage. Confronting the simulations with
the observations requires a sophisticated synthesis of the
visibility data into an interpretable form. One path is to use
general purpose image reconstruction techniques, although
they may suffer from less than optimal use of the expected
morphology of the observations. In contrast, our approach will
be to develop a basis directly in the visibility domain that
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encodes the expected behavior of the source as informed by
simulations. We thus need to understand how the PCA basis of
the simulations will relate to their visibilities. In this section, we
show that the visibilities of the principal components of the
simulation images are in fact the same as the principal
components of the visibilities of these images.

We define the 2D discrete Fourier transform of an image as

å a= = ¼a a
=

˜ ( )I F I N, 1, , . 16
i

N

i i
1

2

2

Here, to account for the folding of the images into one-
dimensional vectors, we have written the discrete Fourier
operator in the compact form

=a
b d+p- ( )[ ]F e , 17i
j kN

2 i

where the indices j, k, β, and δ in the right-hand side of this
relation can be evaluated from the indices α and i via the
relations

= - +[( ) ] ( )k i N1 mod 1, 18

=
-

+ ( )j
i k

N
1 19

and

d a= - +[( ) ] ( )N1 mod 1, 20

b
a d

=
-

+ ( )
N

1. 21

Note that in Equation (17) we used the symbol i for the
imaginary number to distinguish it from index i.

The Fourier transform of matrix A is simply

å=a a
=

˜ ( )A F A 22n
i

N

i in
1

2

and we define the m×m matrix ¢ º ˜ ˜L A AT as

¢ º =



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
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m

m

m m m m

1 1 1 2 1

2 1 2 2 2

1 2

Our goal here is to show that this matrix is the same as L; i.e.,
that ¢ =L L.

We write the vector product that appears in each element of
matrix L′ as

*

*

å

å å å

=

=

a
a a

a
a a

=

= = ¢=
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2 2 2

Because Iif and ¢Ii g do not depend on α, we can rearrange the
above equation as follows

*å å å=
a

a a
= ¢=

¢
=

¢
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⎝
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⎞
⎠
⎟⎟˜ ˜ ( )I I I I F F . 25f g

i

N
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i

N

i g

N

i i
1 1 1

2 2 2

The term in parenthesis above is the 2D Fourier transform of a
constant and is equal to d ¢ii such that

å å

å

d=

= =

= ¢=
¢ ¢

=

˜ ˜

( )

I I
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I I
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if ig f g
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1
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2

Therefore, each element of L is equal to that of ¢L so their
eigenvectors and eigenvalues must also be equal ( l¢ =g g gv vL ).
We now define the covariance matrix for the visibilities in

analogy to that of the images as

*¢ = ˜ ˜ ( )C AA . 27T

As before, we can find the eigenvectors of ¢C by diagonalizing
¢L (see Equation (6)), which demonstrates equivalently that g˜vA

are eigenvectors of ¢C with eigenvalues λγ. To complete our
proof, we must show that the eigenvectors g˜vA are equal to the
Fourier transform of the eigenvectors gvA . In other words, we
must show that the principal components of the set of visibility
maps is equal to the visibilities of the principal components of
the set of images. This can be seen by evaluating each
component of the eigenvector g˜vA as

å å å

å å

= =

= =

g a a g a g

a g g a

= = =

= =

⎛
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v v

A A F A
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m

l l
l

m

i

N

i il l

i

N

i
l

m

il l

1 1 1

1 1

2

2

Therefore, the visibilities of the principal components are
indeed equal to the principal components of the visibilities.
We have thus shown that the PCA basis can be developed in
one domain, such as image space, but is readily applied in the
complementary Fourier (or visibility) domain. This will allow
us to use PCA to compare and possibly fit EHT data to
simulations directly in the visibility domain. The maximally
compact basis provided by the PCA approach may be well-
suited to address the sparse coverage of the visibilities.

3. An Example of PCA

To elucidate how PCA works in practice, we present, in this
section, a simple example that is easy to calculate and
understand. We consider a Gaussian spot moving along a
circular path and simulate 1080 snapshot images as the spot
completes an integer number (3) of orbits. Figure 1 shows a
few example snapshots from this model. We calculate the
principal components of this image set using the PCA
formalism and show in Figure 2 the first few principal
components. We also show in Figure 3 the spectrum of
eigenvalues that we obtain for this model.
The first principal component, which has the largest flux

variance (∼12.7%), amounts to the average image of the
various snapshots (modulo a normalization constant); i.e., it
represents a ring surrounding the circular path with a width
comparable to the width of the Gaussian spot. This is not a
general property of a PCA decomposition but is exact in the
particular example discussed here and is approximately correct
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in the PCA decomposition of the black hole images that we will
discuss in the next section. In the example of the orbiting
Gaussian spot, all terms in each row of the m×m matrix L
(which is also a covariance matrix) also appear in each other
row of the same matrix but are displaced at different columns.
This is true because the product of any two images in the
ensemble depends only on the relative positions of the
Gaussian spots in the two images. In other words, the sum of
the elements of each row of matrix L, i.e., å = Ln

m
in1 is constant.

One of the eigenvectors of a matrix with elements that obey
this property is a vector that has all elements equal to one (or
actually any constant, depending on how the eigenvector is
normalized), i.e., = [ ]v 1 1 1 1 ... 11 . The eigenvector of the
covariance matrix C that corresponds to this eigenvector of the
matrix L is then (see Equation (7))

å= =
=

( )u v IA , 29
n

m

m1 1
1

which (modulo a normalization constant) is nothing but the
average image of the ensemble.

Most eigenimages, other than the lowest-order one, have
pixels with significantly positive and negative brightness, as
one would expect from an eigenvector decomposition.

However, because all images are positive definite and the
lowest-order eigenimage is the average of the ensemble of
images, it follows that the lowest-order eigenimage is also
positive definite. Moreover, because of the symmetry of the
ensemble of images, components 2 and 3 of the spectrum of
eigenimages (in Figure 2) differ only by a rotation. The
eigenvalue connected to each eigenimage is related to its
variance (see Equation (8)) and, hence, these two components
correspond to the same eigenvalue. This behavior persists with
higher components such that components come in pairs with
similar eigenvalues. This creates the step pattern that is present
in Figure 3.
Here and in all simulations of black hole images discussed in

the sections below, the typical values of the amplitudes ank are
very similar between different eigenimages; i.e., the typical
values and distribution of the amplitudes ank depend weakly on
k. Because of this and the fact that the eigenimages are
normalized according to their eigenvalues (see Equation (8)),
the spectrum of eigenvalues, such as the one shown in Figure 3,
matches very closely the spectrum of the relative contributions
of each eigenimage to the reconstruction of any of the m
images in the ensemble. As a result, we can use the spectrum of
eigenvalues as a proxy to investigate the relative contribution
of each eigenimage to the reconstruction of a typical image in

Figure 1. Example snapshots from a simple model of a Gaussian spot moving on a circular path. Here the red circle indicates the approximate trajectory of the center
of the Gaussian spot. The linear scale of the image is arbitrary. We present PCA analysis of realistic GRMHD simulations later in the paper, but this simple example is
useful for understanding how PCA decomposition of the simulations work.

Figure 2. First four components of the PCA decomposition of the Gaussian spot moving on the circular path shown in Figure 1. The eigenvalues which correspond to
these four components are shown in the top left-hand of each panel, respectively. Note that in this figure, and in all figures of principal components in the rest of the
paper, each component has been normalized independently so that the fluxes cannot be compared between different components.
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the ensemble (see below for outlier detection). This is the
reason why we normalize all eigenvalues so that they sum to
unity (see Equation (9)) and we often quote them as
percentages.

In the example of the circulating Gaussian spot that we
discuss in this section, the eigenvalues drop dramatically after
the first few, indicating that only a few components would be
sufficient to reconstruct the original images. Specifically, under
the assumption that the parameters ank are independent of k, we
conclude that the first 10 (out of 1080) components account for
≈88% of the structures present in the ensemble of images,
while ∼25 components account for nearly all of it. For this
particular example, it is straightforward to understand why it
takes only a small fraction of the eigenimages to reconstruct
most of the structures seen in each of the images in the
ensemble by estimating the number of substantially different
images that are present in the ensemble. For the parameters
used in this model, the FWHM of the Gaussian spot subtends
∼13°, as viewed from the center of the circular path. Therefore,
the full circular trajectory can be decomposed into 28 distinct
Gaussian spots that are (mostly) not overlapping. In other
words, there are only 28 “resolution” elements in the circular
trajectory and, therefore, the contribution of all but the first
∼28 eigenimages can only be negligible.

4. Principal Components Analysis of Simulated
Black Hole Images

We now apply PCA to a set of simulated black hole images
at the 1.3mm wavelength of observations for the EHT. We
focus on three of the five best-fit models (Chan et al. 2015a;
Medeiros et al. 2018, 2017) that were calibrated to reproduce
the broadband spectrum of SgrA* and the size of the 1.3mm
emission region inferred by early EHT observations(Doeleman
et al. 2008). These three models span the range of image
morphologies and structural variability that we encountered in
all of our simulations. Specifically, Model B has a 1.3mm
image that is dominated by the accretion disk region and
resembles a crescent shape, Model C has a 1.3mm image that
is dominated by the base of the jet funnel, while Model D has a
1.3mm image that is a combination of both the base of the
funnel and the disk (here we use Chan et al.’s 2015a
nomenclature to label the models).

The simulations were generated by performing time-dependent
general relativistic magnetohydrodynamic (GRMHD) simulations
using the 3D HARM code (Gammie et al. 2003; Narayan et al.
2012; Saḑowski et al. 2013) and by carrying out radiative transfer
and geodesic ray tracing calculations on the simulation outputs
using GRay (Chan et al. 2013). Because GRay is a massively
parallel GPU based code, we were able to generate images as a
function of time with high spatial and temporal resolution, for a
large number of simulations, while varying the black hole spin,
the geometry of the magnetic field, and the plasma model (see
Chan et al. 2015b for a detailed description).

In Figure 4, we show four example snapshots from Model B
highlighting the structural variation in the emission region that
is prominent in this model. Hereafter, when displaying images
of black holes, we will measure all lengths in units of the
gravitational radius GM c2, where M is the mass of the black
hole and G and c are the gravitational constant and speed of
light, respectively. The radius of the black hole shadow is
approximately equal to five gravitational radii while the center
of the shadow is displaced with respect to the center of gravity,

depending on the spin of the black hole (see, e.g., Chan
et al. 2013).
We perform PCA on the three simulations described above

following the procedure outlined in Section 2. Each image set
consists of 1024 images corresponding to the number of
snapshots obtained from the accretion flow simulations that
span ≈60 hr. In Figure 5, we show the first four eigenimages
and their respective eigenvalues for the PCA decomposition of
the three models. For all models, the first eigenimage (left) is
similar to the time average of the ensemble of images (see
Figure 1 in Medeiros et al. 2017 for a comparison with the time
averaged images of these simulations). This is true because all
images have a dominant structure (i.e., a crescent or the
footprints of the funnel), on top of which the variability of the
accretion flow introduces sub-dominant perturbations. Conse-
quently, the correlations between the various snapshots are
very similar to each other and the arguments given in Section 3
for the dominant eigenimage also apply here, although only
approximately.
Although PCA is a purely mathematical tool and is agnostic

about the physics of the system, some of the components do
appear to have identified important physical features. For
example, the second component in ModelB shown in the top
row of Figure 5 appears to have identified a region of the
Doppler boosted accretion disk (center of the crescent shape)
that is very close to the black hole shadow and is highly
variable in the simulations (see, e.g., the second and third
panels of Figure 4). The third and fourth components of Model
B appear to be tracing the Doppler boosted walls of the funnel
region. This also matches the behavior that can be seen directly
in the simulation, where the relative brightness of the wall of
the funnel region is highly variable (see, e.g., the fourth panel
of Figure 4). Note that, due to the 60° inclination of the
observer relative to the spin axis of the black hole in these
simulations, the base of the funnel appears to come from within

Figure 3. Blue curve: the spectrum of eigenvalues for the PCA decomposition
of the Gaussian spot shown in Figure 1; the eigenvalues have been normalized
to sum up to 100%. The step-like features in this spectrum are present because
the high degree of symmetry in this model causes the principal components to
come in pairs with very similar eigenvalues (see the second and third panels of
Figure 2). Magenta curve: the cumulative sum of the eigenvalues. Note that
only the first ∼40 of the 1080 components are shown and that the first 10
components contain 88% of the structural information.
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the black hole shadow but is actually positioned between the
observer and the black hole.

In Model C (middle row), the second component highlights
the edge of the black hole shadow while the other two
components show various ways in which the structure of the
emission at the base of the funnel varies. The PCA
decomposition for Model D (bottom row) shows some features
of Model B—i.e., that a crescent shape is present—and also
some features of Model C—i.e., that the base of the funnel is an
important variable feature in the image.

In Figure 6, we plot the spectra of eigenvalues of the PCA
decomposition of the images from the three models. Unlike the
example of the Gaussian spot that was discussed in Section 3,
the eigenvalue of the first principal component in all three
models overwhelms that of the remaining components. For
example, the eigenvalue of the first component of Model D
corresponds to ∼89%, whereas the eigenvalue of the second
component drops to only ∼2%. In other words, under the
assumptions discussed in Section 3, only the first two
components (out of 1024) are required to account for 90% of
the structures in the images from Model D and only the first
three components are required to reach the same level for
Model C. This result indicates that PCA can be extremely
useful in reducing the dimensionality of the images that arise in
these GRMHD simulations and that only the first few
components are needed to preserve the majority of the image
structure.

Model B differs somewhat from the other two models in this
regard. The eigenvalue that corresponds to the first component
is equal to ∼66%; i.e., it is ∼20% less than in the other two
models. Correspondingly, as many as 33 components are
required to account for 90% of the structure seen in the images
for model B, showing that this model contains significantly
more structural variability than the other models. This is in
agreement with the findings reported in Chan et al. (2015a) and
Medeiros et al. (2018, 2017), where the higher level of flux
variability and flaring behavior was attributed to structural
changes rather than to simple brightness fluctuations. Never-
theless, even for such a simulation that shows more significant
structural variability, the required number of components (33)

is significantly smaller than the total number of images, making
PCA useful for dimensionality reduction. We explore this result
further in the following section.
It is intriguing that despite the differences in the relative

importance of the first ∼10 eigenvalues, the eigenvalue
spectrum declines with the same slope for the higher
components in all models. This suggests a common origin
for the slope of the eigenvalue spectrum, which we will explore
in detail in Section 5.
Finally, we also apply the PCA analysis directly on the

complex visibilities of our image set, which are the components
of the 2D Fourier transform of each image. As we showed in
Section 2.2, we can either calculate the complex visibility maps
for each image in our ensemble and then perform PCA or we
can directly calculate the complex visibility maps for each PCA
component of the ensemble of images; the results will be
identical. Given that the images correspond to vectors with real
elements whereas the visibilities correspond to vectors with
complex elements, we follow the second procedure, which is
easier to implement. In Figure 7, we show the first four PCA
components of the visibility amplitudes and visibility phases of
Model B. As expected, the structures of the visibility
amplitudes and phases changes significantly between these
four components. In fact, the visibility amplitudes of higher
components have more power at longer baselines, which is a
direct consequence of the fact that they contain smaller scale
structures.

5. Dimensionality Reduction and Outlier Identification

As we discussed in the previous section, only the first few
PCA components are required to account for the majority of the
structure seen in the images from each GRMHD simulation.
Components with smaller eigenvalues contribute less to the
brightness of each pixel in the image (see discussion at the end
of Section 3) and account primarily for small-scale structures
(see Figure 7). As alluded to in the introduction, this conclusion
(which is often referred to as dimensionality reduction) also
offers the possibility of using a small number of measurements,
such as those possible with the sparse coverage of the EHT

Figure 4. Four example snapshots of the ensemble of black hole images computed using ModelB at a wavelength of 1.3mm (see text for description of the model
and of the simulations). None of these snapshots correspond to an instant with a significant flare in the flux of the black hole. For this and the following figures, the
peak flux in each panel has been normalized to unity, so changes in overall flux have not been preserved. Although the original images span 32 GM c2 on each side
and the full size images are used in all of the calculations, we choose to show only the innermost ~ GM c20 2 in the figures throughout the paper so that the black
hole shadows are easy to distinguish. The red circles in the figures correspond to the expected size and location of the black hole shadow for each particular model.
The location of the circle relative to the center of the image depends on the black hole spin and is not necessarily centered on the location of the black hole itself.
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array, to reconstruct the persistent image of a black hole and,
therefore, extract the information that is most relevant for
detecting its shadow. To explore the idea of using the first few
components to describe the persistent structure from the
variable flow, we calculate and compare reconstructions of
images from the simulations using the first few components of
the PCA decomposition to the original images.

Figure 8 shows an example snapshot from the Model B
simulation compared to its reconstruction using the first 10, 40,

and 100 out of the 1024 PCA components. Although the
reconstructions with only a small number of components do not
reproduce the finer details of the images, they do capture their
overall structure. The fidelity of reconstruction naturally
increases as more components are added. The number of
components we may choose to keep in a particular reconstruc-
tion and, hence, the degree of dimensionality reduction will
naturally depend on the goal of the reconstruction. Never-
theless, even at a qualitative level, this figure suggests that

Figure 5. First four principal components and their corresponding eigenvalues for the three GRMHD simulations (models B, C, and D) described in the text. The
principal component for each simulation (leftmost panel) is approximately equal to the average image from the simulation (see Figure 1 in Medeiros et al. 2017).
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dimensionality reduction by factors of 10–100 may be
achievable in characterizing black hole images with PCA.

The snapshot in Figure 8 is typical and, therefore, can easily
be reconstructed using only the first few PCA components.
However, there may be snapshots within a given simulation
that are much harder to reconstruct because the structure of the
image is unusual compared to the rest of the ensemble. For the
purposes of this work, we will define an outlier as an image that
cannot be easily reconstructed by the first few (or a “typical”
number of) eigenimages. As we will show below, PCA allows
us to devise an algorithmic approach for outlier detection.
When we apply PCA to numerical simulations, this outlier
detection will enable us to efficiently identify instances where
rare and episodic events occurred in the simulation, such as a
flare in the emission properties of the accretion flow. When we
apply PCA to observational data, detecting outliers will allow
us to identify similar episodic events that may be caused by
physical phenomena or data corruption.

There are many ways of using PCA to identify outliers in a
set of images. A common method measures the Euclidean
distance of each image in the hyperspace spanned by the set of
eigenimages (often related to the Mahalanobis distance,
Mahalanobis 1936). In implementations of outlier detection
based on the Mahalanobis distance, the ensemble of images (or
other data) is often standardized so that the distribution of pixel
brightness within each image has been mean centered and
scaled by its standard deviation. Because we have chosen not to
standardize our dataset, applying the Euclidean distance
method directly to our PCA implementation would identify
as outliers any images that are simply brighter than the average
image but without necessarily any substantial structural
difference. In the context of using PCA to describe simulations
of accreting black holes, we can easily identify such bright
events by simply looking at large excursions of the total flux

from the mean value. Instead, our goal is to identify as outliers
those snapshots with structures in the images that are
substantially different from those of the typical snapshots.
Consequently, we define a Euclidean distance using the
fractional contribution of each eigenimage to the reconstruction
of an image in the ensemble (see Equation (15)).
We will consider a given snapshot (In) as typical, if it can be

adequately reconstructed by the first l eigenimages (l can be
chosen based on the particular distribution and application). To
quantify the degree to which a snapshot is atypical, we define
the quantity
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shows the spread in that distribution, and wk is an appropriate
weight function. We set the weight function to wk=λk
because, in our implementation, the typical contribution of each
eigenimage to any reconstruction is proportional to lk and we
want to give more weight to the most dominant eigenimages
when identifying outliers.
In Figure 9, we show Rnl for l=5, 10, and 20 for all

snapshots in Model B as well as the normalized light curve. A
number of time instances can be easily identified as atypical—
i.e., with R 1nl —but these instances do not necessarily
correlate with large brightness excursions. To examine this
point further, we show in Figure 10 three original snapshots
as well as the reconstructions using the first 5, 10, and 20
principal components. The top row (denoted as “row 1” in
Figure 9) shows an example of a time instance that is not
identified as an outlier but corresponds to the largest flux
excursion in this simulation. Clearly, this snapshot can be
easily reconstructed by the first 10 eigenimages and has a low
Rnl value for all three values of l. This snapshot, despite being
substantially brighter than the others, does not correspond to a
significant structural change in the image. The second row
(“row 2”) shows a time instance that is identified as an outlier
but does not correspond to a significant flux excursion. The
morphology of the image is quite unusual when compared to
the rest of the simulation and a reconstruction with 20
eigenimages fails to capture the general structure of the image.
The third row (“row 3”) shows a time instance that is both
identified as an outlier and shows a significant flux excursion.
The reconstruction of this snapshot with 20 eigenimages is also
inadequate.
These results demonstrate that, in our simulations, flux

excursions and unusual image morphologies are not necessarily

Figure 6. The eigenvalue spectra of the PCA decomposition of the images
from the three GRMHD simulations that we consider. The filled circles along
each spectrum indicate the number of PCA components that are required to
account for 90% of the image structures. The rapid decay of the eigenvalue
spectrum indicates that PCA can be used to significantly reduce the
dimensionality of the ensemble of images that arise in these simulations.
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coincident but the two can be disentangled with the use of the
quantity Rnl that we have introduced here.

6. Understanding the Eigenvalue Spectrum of PCA

In this section, we turn our attention to understanding the
behavior of the spectrum of eigenvalues of the PCA
decomposition of the GRMHD simulations. Specifically, we

focus on the higher-order components, which have small
eigenvalues and contribute primarily to the small-scale,
variable structures that are seen in the images. We aim to
understand the origin of their eigenvalue spectra, which have
the intriguing property of being power laws with very similar
slopes in all simulations. This allows us to explore whether the
spectra of eigenvalues are related to the underlying properties

Figure 7. Visibility amplitudes (top row) and visibility phases (bottom row) of the first four components of the PCA decomposition of Model B (cf. the top row of
Figure 5). Higher components contribute significantly at increasingly longer baselines.

Figure 8. Left panel shows a typical snapshot from Model B. The three right panels show the same snapshot from Model B but reconstructed using only the first 10,
40, and 100 components from the PCA decomposition. The reconstruction using only the first 10 components smooths over the fine scale structure but faithfully
reproduces the overall brightness distribution of the full image.

10

The Astrophysical Journal, 864:7 (16pp), 2018 September 1 Medeiros et al.



Figure 9. Dotted black line shows the normalized light curve for Model B. The cyan, red, and blue curves correspond to the quantity Rnl for l=5, 10, and 20,
respectively. The peaks in the cyan, red, and blue curves indicate time instances that cannot be adequately reconstructed by only the first few components and are,
hence, identified as outliers. The three time instances identified as “row1,” “row2,” and “row3” correspond to the images that are shown in Figure 10.

Figure 10. Left-most panels show three snapshots from the ensemble of images calculated for ModelB. In each row, the three consecutive panels show
reconstructions using the first 5, 10, and 20 principal components. The top row corresponds to a time instance that is not identified as an outlier but which corresponds
to a large flux excursion from the accretion flow (this time step is denoted by “row 1” in Figure 9). Note that this image is well-fitted with the first 20 eigenimages and,
thus, has a small Rnl value. The second row corresponds to a time step which is identified as an outlier with no significant flux excursion. The third row corresponds to
a time instance that is both identified as an outlier and shows a large flux excursion. Both of these latter images are poorly fitted by even 20 eigenimages and have been
identified as outliers by their Rnl values.
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of GRMHD turbulence and, hence, whether measuring them in
observations can help us better understand turbulence in
accretion flows.

The power-law shapes of the eigenvalue spectra are
reminiscent of noise processes. Consequently, we begin by
exploring the PCA eigenvalue spectrum of Gaussian noise in
an image and then continue with a red-noise process.

6.1. Gaussian Noise

We consider a Gaussian noise model where the brightness of
each pixel is a random number taken from a Gaussian
distribution centered at zero. We perform PCA on 1024 images
with independent realizations of Gaussian noise with a standard
deviation of σ=0.5 over 512×512 pixels. Figure 11 shows
the first few principal components and their respective
eigenvalues. Any two images in the ensemble are statistically
uncorrelated. However, the elements of matrix L are not zero
because small, non-zero residual correlations between any two
images remain because of the finite number of pixels in each
image and the statistical nature of noise. The eigenvalues of all
components are similar, indicating that all of the principal
components are of similar importance and dimensionality
reduction is not possible for this configuration.

The presence of minor correlations between pairs of images
leads to a distribution of eigenvalues of finite width. In PCA,
we count the eigenvectors in decreasing order of their
eigenvalues; therefore, this distribution leads to a spectrum of
eigenvalues with a non-zero slope. Figure 12 shows the
spectrum of the eigenvalues of our realization of the Gaussian
noise model. The eigenvalues are normalized such that they
sum to unity (see Equation (9)). Given that our simulation
of Gaussian noise involves m=1024 images, there are 1024
non-trivial eigenvalues of similar magnitude with a mean of
1/1024;0.098%. To estimate the standard deviation of the
distribution of eigenvalues, we consider the fact that there are
mN2 individual realizations of the Gaussian noise in the
ensemble of m=1024 images with N2=5122 pixels each.
Therefore, we expect the standard deviation of eigenvalues to
be comparable to

s =
- -

 ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ( )

mN

m N1
0.06

1024 512
%. 33

2

1 2 1

The full range of eigenvalues in our particular realization of
images is from 0.0859% to 0.1101%, which corresponds to a
width of ≈4σ. In Figure 12, we show the range of 4σaround
the expected mean magnitude of the eigenvalues to visualize
this result.
In contrast to Gaussian noise, the spectra of PCA

eigenvalues for our GRMHD simulations, including the
power-law tails at large eigenvector numbers, do not depend
on either the number of images or the number of pixels. We
tested this by decreasing our spatial and temporal resolution by
factors of 2 and 4 but preserving the total time span and image
size. This behavior indicates that the structures present in our
simulations are much larger than the pixel size; consequently,
changing the number of pixels does not alter the PCA
decomposition. A similar argument is valid for the lack of
dependence on the number of images. For this reason, we now
turn our attention to noise spectra with maximum power at
scales that are larger than the pixel sizes.

6.2. Red Noise

The spatial and time variability of images of accretion flows,
such as those from SgrA*, are expected to be approximated by
red-noise power spectra. This is based both on the observa-
tionally measured flux variability of SgrA* (Meyer et al. 2008;
Dexter et al. 2014) and on theoretical models (e.g., Dolence et
al. 2012 and Chan et al. 2015a). Other physical phenomena that
affect black hole images, such as refractive scattering in the
intervening medium, are also expected to introduce noise at
different characteristic scales (e.g., Johnson & Narayan 2016).
Because of such considerations, we consider here an ensemble
of images with structure described by an isotropic, red-noise
2D Fourier spectrum given by

pa= +a a- - +( ) ( ) ( )( ) ( )P q e q q2 34q q 2
min
2 1 2max

2

such that the image brightness at a location given by the
transverse vector r on the image plane is

ò= -( ) ( ) [ · ] ( )r q rI I d qP q iexp . 350
2

Here, qmin and qmax determine the location of the first and
second breaks in the spectrum and consequently the sizes of the

Figure 11. First four components of the PCA decomposition of 1024 images with purely Gaussian noise and their respective eigenvalues. The brightness of each pixel
in these images is a random number taken from a Gaussian distribution centered at zero with a width of σ=0.5. Because each image is uncorrelated from the rest, all
principal components have very similar eigenvalues and dimensionality reduction using PCA is not possible for this system.
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largest and smallest structures in the images, respectively. The
parameter α determines the slope of the power spectrum in the
region between qmin and qmax.

Figure 13 shows a plot of this spectrum with qmax=30,
qmin=0.5, and α=5/3. As expected, for α=5/3, there is
very little power at the small scales where qmax is relevant. The
majority of the power is at the larger scales related to qmin.
Figure 14 shows some examples of images with different red-
noise realizations. By construction, the structures in these
images are almost entirely resolved in an N×N image, as long
as the size of each pixel is much smaller than 1/qmax.

To investigate the effect of red noise on the PCA of images,
we construct numerous sets of 1024 images for different values
of the red-noise parameters, such as those in Figure 14, and
perform PCA on the set. We now explore the dependence of
the PCA decomposition of these images on the parameters of
the red-noise spectrum.

The spectrum of PCA eigenvalues of red noise does not
depend on the number of pixels N per image, as long as the size
of the dominant scale of the noise is fully resolved; i.e., as long
as L N q1 min, where L is the linear size of the image. This
is similar to the PCA results for the images of the GRMHD
simulations and unlike those of the Gaussian noise simulations
that were discussed earlier. The eigenvalue spectrum is also
independent of qmax as long as q qmax min and α>−1
because, if these conditions are met, there is negligible power at
scales ∼1/qmax to affect the PCA decomposition significantly.

Figure 15 shows the spectrum of PCA eigenvalues and its
dependence on qmin. For α>−1, 1/qmin determines the size of
the dominant scale of the noise structures. The number of
dominant noise structures that can fit in an image of size L is
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Therefore, following the discussion in Section 3, we expect that
this number corresponds to the number of dominant PCA
components. This is shown in Figure 15, where the filled circle
on each spectrum corresponds to the eigenvalue of the nth PCA
component given by the previous relation. Clearly, as qmin

increases, the structures on the images become smaller and
more PCA components are necessary to reconstruct with
fidelity the original ensemble of images.
For a given value of the parameter qmin, the number of

images m in the ensemble determines whether or not the
spectrum of eigenvalues has converged. Indeed, as we
discussed earlier, for small values of qmin, which correspond
to large dominant noise structures, a small number of
eigenimages is required to reconstruct with fidelity the full
ensemble of images. In this case, as long as =m n L q2 min

2 ,
the eigenvalue spectrum has converged and its shape depends
only very weakly on the number m of images in the ensemble.
Figure 16 shows the spectrum of PCA eigenvalues for

images with Fourier spectra characterized by different power-
law indices α>−1. As in Figure 15, the spectra are relatively
flat until the nth PCA component but then turn into power laws
with indices that appear to be correlated with α. For α−1,
which we do not show, the dominant noise structures occur at
small scales ;1/qmax and the resulting eigenvalue spectra are
flat with very weak dependence on α.
We further explore the dependence of the eigenvalue spectra

on α>−1 by fitting the higher components of each
eigenvalue spectrum with a power-law function of the form
l ~ g-kk and show in Figure 17 the dependence of the fitted
power-law index γ on α. We find this dependence to be

g a + ( )5

4
2. 37

Note that, for the simulations used in generating Figure 17, we
set qmin=0.1 to force the breaks of the eigenvalue spectra to

Figure 12. Eigenvalue spectrum for the PCA decomposition of an ensemble of
images with Gaussian noise. The gray rectangle represents the expected range
of eigenvalues, given the statistical nature of Gaussian noise (see text). Note the
very small range of the y-axis.

Figure 13. Red-noise spectrum given in Equation (34) with qmax=30,
qmin=0.5, and α=5/3. The parameters qmin and qmax determine the
locations of the first and second break in the spectrum, respectively, and α
specifies the slope of the region between qmin and qmax.
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occur at low PCA components and, thus, to allow for a more
accurate determination of the power-law index of the spectra.
This result demonstrates that the 2D Fourier spectrum of the
structures in the image plane determine in a predictable way the
high-end spectrum of PCA eigenvalues and, therefore, the latter
can be used to infer the former.

6.3. The Small-scale Structures of Black Hole Images from
GRMHD Simulations

In Figure 16, we compare the spectra of PCA eigenvalues
from the black hole images of GRMHD simulations to those of
the images with red-noise Fourier spectra. The large range of
eigenvalues in the GRMHD simulations is clearly inconsistent

with the small expected range of eigenvalues for purely
Gaussian noise (see also Figure 12). This suggests a more
complex origin of image structure and variability than what has
been assumed in the past (cf. Broderick et al. 2016).
The spectra of PCA eigenvalues for the images of GRMHD

simulations become power laws after only the first handful of
PCA components. This suggests that Lqmin for these simula-
tions is a small number (see Equation (36) and Figure 15) and,
therefore, that the typical scale of variable structure in the
images is comparable to the size of the images themselves. In
other words, it is comparable to the size of the black hole
shadow. This is consistent with the discussion in Medeiros
et al. (2017, 2018), who attributed the variability of the
simulated interferometric amplitudes and closure phases to
overall changes in the widths of the crescent-like images, as
well as to the appearance and disappearance from the images of

Figure 14. Examples of images with different realizations of red noise with the isotropic power spectrum shown in Figure 13 and random phase fluctuations. As
expected for α=5/3, most of the power is at scales ;1/qmin.

Figure 15. Spectra of PCA eigenvalues for ensembles of images with isotropic
red noise and for different values of the parameter qmin; the remaining
parameters are the same as in Figure 13. For lower values of qmin the dominant
scale of the structures in the images is larger and fewer PCA components are
required to reproduce the majority of structure in the images. The filled circles
on each curve indicate the number of PCA components that are equal to the
approximate number of different noise structures that can fit in the image; i.e.,
where the number of components is equal to L q2 min

2 , where L is the size of the
image.

Figure 16. Spectra of PCA eigenvalues for ensembles of images with isotropic
red noise and for different values of the power-law index α; the remaining
parameters are the same as in Figure 13. For comparison, the eigenvalue
spectra of the GRMHD models B, C, and D are also included in the black, blue,
and red dashed lines, respectively. The power-law slope of the eigenvalue
spectrum after the break depends strongly on α.
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large, hot, and, therefore, bright magnetic flux tubes that orbit
the black hole.

The power-law indices in the eigenvalue spectra of the
images from GRMHD simulations are nearly independent of
the underlying model and equal to γ;1.3. Using
Equation (37), we find that this implies a power-law index
for the 2D Fourier spectrum of the variable structures of
α;−0.5. It is important to emphasize here that this power-
law index characterizes the 2D Fourier spectrum of the variable
structures, which are determined in a complex, nonlinear way
by the anisotropies in the density, temperature, emissivity,
magnetic field, and lensing in the vicinity of the black hole. It
is, therefore, not surprising that the inferred value of α does not
reflect the underlying power spectrum of the MHD turbulence
in the accretion flow.

7. Conclusion

Understanding the horizon-scale millimeter emission around
an accreting black hole requires a two-pronged approach. One
component is to utilize our best understanding of the physics to
generate high-fidelity GRMHD simulations of the morphology
of the emission. The second is to use an interferometer, such as
the EHT, to test the understanding of the physics with real
observations. There is a common theme in both components:
the question of how we characterize and extract the salient
information in an ensemble of images. In this paper, we have
demonstrated that PCA offers an effective tool for this task
over a wealth of different problems.

Focusing purely on the simulations, we showed that PCA
offers an extremely compact representation of the theoretical
millimeter images. Each simulation comprises over 1000
distinct images, yet we find that we can represent most of the
images with only a few to a few dozen eigenimages, depending

on the desired fidelity. Moreover, recognizing images poorly
represented by the leading eigenimages is critical and
represents another useful application of PCA. As detailed in
the introduction, the temporal variability of the strength and
morphology of the millimeter emission close to the horizon is a
phenomenon that can limit or compromise the construction of
interferometric images. Knowledge of the amplitudes of the
eigenimages needed to represent any given image can be used
to define a simple scalar metric that flags outliers in either the
simulations or observations. This approach has already
provided the realization that outliers may be more subtle than
had been presumed. It had been supposed that flares in flux
would correspond to events in which the emission morphology
would show strong departures from the average form. Yet the
outlier metric Rnl (see Equation (30)) allowed us to identify
both images that had unusual morphology with no significant
excursion in flux, as well as flare events that had perfectly
ordinary morphology. As useful as this particular metric is in
this work, we emphasize that other metrics and classifiers can
be constructed from the locations of the simulated images in
their eigenspace. Our goal here is not to strongly advocate any
particular metric but to provide a useful example of what is
possible within the PCA representation.
Apart from the identification of outliers, we have also

demonstrated the use of the eigenvalue spectrum to characterize
the properties of the noise and turbulent structure in the
simulations. This approach shows a path for allowing the rapid
quantitative evaluation of GRMHD simulations over a
significant time span of accretion. As with the outlier metric
Rnl, other diagnostic metrics can be built around the locations
or trajectories of the simulated images as a function of time in
their eigenspace.
Lastly, we showed that PCA may be applied directly to the

analysis of interferometric data because the Fourier transform
of the principal components of a set of images is equivalent to
the principal components of the set of Fourier transformed
images. When coupled with the dimensionality reduction that
we discussed above, this property opens the possibility of using
PCA for efficient image reconstruction from sparse interfero-
metric data. In parallel, the PCA approach can be incorporated
into the Bayesian inference method discussed in Kim et al.
(2016) to generate efficient comparisons of EHT data to large
suites of GRMHD simulations. Additionally, analysis of the
temporal variability of the amplitude of each eigenimage may
be fruitful for further understanding of the variability in both
the simulations and the data. We will explore these avenues in
future work.
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